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Investigation of the Behavior of an Interface Crack between Two

Half-Planes of Orthotropic Functionally Graded

Materials by Using a New Method∗

Zhen-Gong ZHOU∗∗, Biao WANG∗∗ and Li-Jian YANG∗∗

In this paper, the problem of a crack along an interface between inhomogeneous or-
thotropic media is solved by using a new method, named the Schmidt method. To make the
analysis tractable, it is assumed that the Poisson’s ratios of the mediums are constant and the
material modulus varies exponentially with coordinate parallel to the crack. By use of the
Fourier transform, the problem can be solved with the help of two pairs of dual integral equa-
tions in which the unknown variables are the jumps of the displacements across the crack. To
solve the dual integral equations, the jumps of the displacements across the crack surfaces are
expanded in a series of Jacobi polynomials. Numerical examples are provided to show the
effects of the length of the crack and the parameter describing the functionally graded materi-
als upon the stress intensity factor of the cracks. When the material properties are continuous
across the crack line, the numerical results are the same as those obtained so far. When the
material properties are not continuous across the crack line, an approximate solution of the
interface crack problem is given under the assumptions that the effect of the crack surface
overlapping very near the crack tips is negligible. Contrary to the previous solution of the
interface crack, it is found that the stress singularities of the present interface crack solution
are similar with ones for the ordinary crack in homogenous orthotropic materials.

Key Words: Elasticity, Interface Crack, Orthotropic Materials, Functionally Graded Mate-
rials, Schmidt Method, Dual Integral Equations

1. Introduction

The analysis of functionally graded materials (FGMs)
has become a subject of increasing importance motivated
by a number of potential benefits achievable from the use
of such novel materials in a wide range of modern techno-
logical practices. The major advantages of graded materi-
als, especially in elevated temperature environments, stem
from the tailoring capability to produce a gradual varia-
tion of its thermomechanical properties in the spatial do-
main(1). In particular, the use of a graded material as inter-
layers between bonded media is one of the highly effective
and promising applications in eliminating various short-
coming resulting from stepwise property mismatch inher-
ent in piecewise homogeneous composite media(2) – (4).
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From the fracture mechanics viewpoint, the presence
of a graded interlayer would play an important role in de-
termining the crack driving forces and fracture resistance
parameters. In an attempt to address the issues pertain-
ing to the fracture analysis of bonded media with such
transitional interfacial properties, a series of solutions to
certain crack problems was obtained by Erdogan and his
associates(5) – (7). Among them there are the solutions for a
crack in the non-homogeneous interlayer bounded by dis-
similar homogeneous media(5); and for a crack at the in-
terface between homogeneous and non-homogeneous ma-
terials(6), (7). Similar problems of delamination or an in-
terface crack between a functionally graded coating and a
substrate were considered in Refs. (8) – (10). The dynamic
crack problem for non-homogeneous composite materi-
als was considered in Ref. (11) but authors considered the
FGM layer as a multi-layered homogeneous medium. The
crack problem in FGM layers under thermal stresses was
studied by Edrogen and Wu(12). They considered an un-
constrained elastic layer under statically self-equilibrating
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thermal or residual stresses.
In this paper, the problem in Ref. (13) is reworked us-

ing a somewhat different approach, named the Schmidt
method(14), (15). As discussed in Ref. (13), it is assumed
that the Poisson’s ratios ν( j)

ik (i,k = 1,2,3, j = 1,2) of

the mediums are constants and the material modulus µ( j)
ik ,

E( j)
i (i, j,k=1,2) varies exponentially with coordinate par-

allel to the crack. By use of the Fourier transform tech-
nique, the problem can be solved with the help of two
pairs of dual integral equations in which the unknown
variables are the jumps of the displacements across the
crack surfaces. To solve the dual integral equations, the
jumps of the displacements across crack surfaces are ex-
panded in a series of Jacobi polynomials. This process is
quite different from those adopted in Refs. (1) – (13) and
(15) – (20) as mentioned above. However, in the previous
works(5) – (13), (18) – (20), the unknown variables of dual inte-
gral equations are the dislocation density functions. This
is the major difference. First, the numerical solutions are
obtained for the stress intensity factors when the material
properties are continuous along the crack line. The nu-
merical results are similar with that in Ref. (13). Second,
the numerical solutions are also obtained when the ma-
terial properties are not continuous across the crack line
under the assumptions that the effect of the crack surface
overlapping very near the crack tips is negligible. For this
special case (From practical view points, researchers in
the field of functionally graded materials will not pay their
attention in this case), it is found that the stress singulari-
ties of the present interface crack solution are similar with
ones for the ordinary crack in homogeneous orthotropic
materials(16), (17).

2. Formulation of the Crack Problem

It is assumed that there is an interface crack of length
2l along the x-axis between two dissimilar orthotropic
FGM half-planes −∞< x<∞, 0≤ y<∞ and −∞< x<∞,
−∞<y≤ 0 as shown in Fig. 1. As discussed in Refs. (13)
and (18), to make the analysis tractable, the elastic con-
stants of the FGM are assumed to be as follows in the
global x – y coordinates

µ
( j)
ik =µ

( j)
ik0eβ

( j) x, E( j)
i =E( j)

i0 eβ
( j) x, ( j=1,2; i,k=1,2,3)

(1)

where β( j) is a constant (The superscript j = 1,2 corre-
sponds to the upper half plane and the lower half plane
throughout this paper.). If µ(1)

120 = µ
(2)
120, E(1)

10 = E(2)
20 and

β(1)=β(2), the problem in this paper will return to the same
problem as discussed in Ref. (13).

Here, u( j)(x,y) and ν( j)(x,y) represent the displace-
ment components in the x- and y-directions, respectively.
The constitutive relations for the non-homogeneous mate-
rial are written as

Fig. 1 Geometry of the interface crack between two dissimilar
orthotropic functionally graded materials and the
variation of the elastic constants µ( j)

ik = µ
( j)
ik0eβ

( j) x and

E( j)
i =E( j)

i0 eβ
( j) x (i, j,k=1,2)

σ
( j)
x (x,y)=µ( j)

120eβ
( j) x

[
c( j)

11

∂u( j)

∂x
+c( j)

12

∂ν( j)

∂y

]
, ( j=1,2)

(2)

σ
( j)
y (x,y)=µ( j)

120eβ
( j) x

[
c( j)

12

∂u( j)

∂x
+c( j)

22

∂ν( j)

∂y

]
, ( j=1,2)

(3)

τ
( j)
xy (x,y)=µ( j)

120eβ
( j) x

[
∂u( j)

∂y
+
∂ν( j)

∂x

]
, ( j=1,2) (4)

The non-dimensional parameters c( j)
ik (i,k= 1,2,3, j= 1,2)

involved in the above equations are related to the elastic
constants by the relations:

c( j)
11 =E( j)

10

/[
µ

( j)
120

(
1−ν( j)2

12 E( j)
20 /E

( j)
10

)]
c( j)

22 =E( j)
20

/[
µ

( j)
120

(
1−ν( j)2

12 E( j)
20 /E

( j)
10

)]
= c( j)

11 E( j)
20 /E

( j)
10

c( j)
12 = ν

( j)
12 E( j)

20

/[
µ

( j)
120

(
1−ν( j)2

12 E( j)
20 /E

( j)
10

)]
= ν

( j)
12 c( j)

22

= ν
( j)
21 c( j)

11 , ( j=1,2) (5)

for generalized plane stress, and by

c( j)
11 =E( j)

10

(
1−ν( j)

23ν
( j)
32

)/(
∆( j)µ

( j)
120

)
c( j)

22 =E( j)
20

(
1−ν( j)

13ν
( j)
31

)/(
∆( j)µ

( j)
120

)
c( j)

12 =E( j)
10

(
ν

( j)
21 +ν

( j)
13ν

( j)
32 E( j)

20 /E
( j)
10

)/(
∆( j)µ

( j)
120

)
=E( j)

20

(
ν

( j)
12 +ν

( j)
23ν

( j)
31 E( j)

10 /E
( j)
20

)/(
∆( j)µ

( j)
120

)
∆( j) =1−ν( j)

12ν
( j)
21 −ν( j)

23ν
( j)
32 −ν( j)

31ν
( j)
13 −ν( j)

12ν
( j)
23ν

( j)
31

−ν( j)
13ν

( j)
21ν

( j)
32 , ( j=1,2) (6)

for plane strain. ν( j)
ik ( j=1,2; i,k=1,2,3) are the Poisson’s

ratio and are taken to be constant; owing to the fact its vari-
ation within a practical range has an insignificant influence
on the value of the near-tip driving for fracture(1) – (3).

In this paper, we just consider the generalized plane
stress problem. The equations of equilibrium of the or-
thotropic FGMs, in the absence of body forces, may be
expressed as follows:

c( j)
11

∂2u( j)

∂x2
+
∂2u( j)

∂y2
+
(
1+c( j)

12

) ∂2ν( j)

∂x∂y

+β( j)

(
c( j)

11

∂u( j)

∂x
+c( j)

12

∂ν( j)

∂y

)
=0, ( j=1,2) (7)
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∂2ν( j)

∂x2
+c( j)

22

∂2ν( j)

∂y2
+
(
1+c( j)

12

) ∂2u( j)

∂x∂y

+β( j)

(
∂u( j)

∂y
+
∂ν( j)

∂x

)
=0, ( j=1,2) (8)

3. Solution

The system of above governing equations is solved,
using the Fourier integral transform technique to obtain
the general expressions for the displacement components
as


u(1)(x,y)=

1
2π

∫ ∞
−∞

2∑
j=1

Aj(s)e−λ j(s)ye−isxds

ν(1)(x,y)=
1

2π

∫ ∞
−∞

2∑
j=1

mj(s)Aj(s)e−λ j(s)ye−isxds
(9)


u(2)(x,y)=

1
2π

∫ ∞
−∞

4∑
j=3

Aj(s)e−λ j(s)ye−isxds

ν(2)(x,y)=
1

2π

∫ ∞
−∞

4∑
j=3

mj(s)Aj(s)e−λ j(s)ye−isxds

(10)

and from Eqs. (2) – (4), the stress components are obtained
as


σ(1)
y (x,y)=

µ(1)
120eβ

(1) x

2π

∫ ∞
−∞

2∑
j=1

[
−isc(1)

12 −c(1)
22 mj(s)λ j(s)

]
Aj(s)e−λ j(s)ye−isxds

τ(1)
xy (x,y)=

µ(1)
120eβ

(1) x

2π

∫ ∞
−∞

2∑
j=1

[
−λ j(s)− imj(s)s

]
Aj(s)e−λ j(s)ye−isxds

(11)


σ(2)
y (x,y)=

µ(2)
120eβ

(2) x

2π

∫ ∞
−∞

4∑
j=3

[
−isc(2)

12 −c(2)
22 mj(s)λ j(s)

]
Aj(s)e−λ j(s)ye−isxds

τ(2)
xy (x,y)=

µ(2)
120eβ

(2) x

2π

∫ ∞
−∞

4∑
j=3

[
−λ j(s)− imj(s)s

]
Aj(s)e−λ j(s)ye−isxds

(12)

where s is the transform variable, Aj ( j=1,2,3,4) are arbitrary unknowns.
λ j(s) ( j=1,2) are the roots of the following characteristic equation

c(1)
22 λ

4−
[
s2
(
c(1)

11 c(1)
22 −c(1)2

12 −2c(1)
12

)
+ isβ(1)

(
c(1)

11 c(1)
22 −2c(1)

12 −c(1)2
12

)
+β(1)2c(1)

12

]
λ2+c(1)

11 s2
(
s+ iβ(1)

)2
=0 (13)

and mj(s) ( j=1,2) are expressed for each root λ j(s) ( j=1,2) as

mj(s)=
−c(1)

11 s2+λ2
j (s)− isβ(1)c(1)

11

λ j(s)
[
−is
(
1+c(1)

12

)
+β(1)c(1)

12

] , ( j=1,2) (14)

λ j(s) ( j=3,4) are the roots of the following characteristic equation

c(2)
22 λ

4−
[
s2
(
c(2)

11 c(2)
22 −c(2)2

12 −2c(2)
12

)
+ isβ(2)

(
c(2)

11 c(2)
22 −2c(2)

12 −c(2)2
12

)
+β(2)2c(2)

12

]
λ2+c(2)

11 s2
(
s+ iβ(2)

)2
=0 (15)

and mj(s) ( j=3,4) are expressed for each root λ j(s) ( j=3,4) as

mj(s)=
−c(2)

11 s2+λ2
j (s)− isβ(2)c(2)

11

λ j(s)
[
−is
(
1+c(2)

12

)
+β(2)c(2)

12

] , ( j=3,4) (16)

The roots may be obtained as

λ1(s)=

√√√√√
α(1)(s)+

√
α(1)2(s)−4γ(1)(s)c(1)

22

2c(1)
22

, λ2(s)=

√√√√√
α(1)(s)−

√
α(1)2(s)−4γ(1)(s)c(1)

22

2c(1)
22

(17)

λ3(s)=−

√√√√√
α(2)(s)+

√
α(2)2(s)−4γ(2)(s)c(2)

22

2c(2)
22

, λ4(s)=−

√√√√√
α(2)(s)−

√
α(2)2(s)−4γ(2)(s)c(2)

22

2c(2)
22

(18)

where

α(1)(s)= s2
(
c(1)

11 c(1)
22 −c(1)2

12 −2c(1)
12

)
+ isβ(1)

(
c(1)

11 c(1)
22 −2c(1)

12 −c(1)2
12

)
+β(1)2c(1)

12 , γ
(1)(s)= c(1)

11 s2
(
s+ iβ(1)

)2
,

α(2)(s)= s2
(
c(2)

11 c(2)
22 −c(2)2

12 −2c(2)
12

)
+ isβ(2)

(
c(2)

11 c(2)
22 −2c(2)

12 −c(2)2
12

)
+β(2)2c(2)

12 , γ
(2)(s)= c(2)

11 s2
(
s+ iβ(2)

)2
.

From Eqs. (9) – (12), it can be seen that there are four unknown constants (in Fourier space they are functions of s), i.e.,
Aj, j=1,2,3,4, which can be determined from the following boundary conditions:
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σ(1)
y (x,0)=σ(2)

y (x,0)=−σ0(x),

τ(1)
xy (x,0)=τ(2)

xy (x,0)=−τ0(x), |x| ≤ l (19)

σ(1)
y (x,0)=σ(2)

y (x,0), τ(1)
xy (x,0)=τ(2)

xy (x,0), |x|> l

(20)

u(1)(x,0)=u(2)(x,0), ν(1)(x,0)= ν(2)(x,0), |x|> l

(21)

where σ0(x) and τ0(x) are known functions.
Let fi(x) (i = 1,2) be the jumps of the displacements

across the crack surfaces defined as follows:

f1(x)=u(1)(x,0)−u(2)(x,0) (22)

f2(x)= ν(1)(x,0)−ν(2)(x,0) (23)

In the solution of such problem, it is obvious that some
unsurmountable mathematical difficulties will be encoun-
tered and have to be simplified with the parameter β(i) (i=
1,2). In this paper, it is decided to assume β(1) = β(2) = β.
Applying the Fourier transforms and the boundary condi-
tions (19) – (21), it can be obtained

[X1]

[
A1(s)
A2(s)

]
= [X2]

[
A3(s)
A4(s)

]
(24)

[X3]

[
A1(s)
A2(s)

]
− [X4]

[
A3(s)
A4(s)

]
=

[
f̄1(s)
f̄2(s)

]
(25)

where

[X1]=

 µ
(1)
120

[
−isc(1)

12 −c(1)
22 m1(s)λ1(s)

]
µ(1)

120

[
−isc(1)

12 −c(1)
22 m2(s)λ2(s)

]
µ(1)

120 [−λ1(s)− im1(s)s] µ(1)
120 [−λ2(s)− im2(s)s]

 ,
[X2]=

 µ
(2)
120

[
−isc(2)

12 −c(2)
22 m3(s)λ3(s)

]
µ(2)

120

[
−isc(2)

12 −c(2)
22 m4(s)λ4(s)

]
µ(2)

120 [−λ3(s)− im3(s)s] µ(2)
120[−λ4(s)− im4(s)s]

 ,
[X3]=

[
1 1

m1(s) m2(s)

]
, [X4]=

[
1 1

m3(s) m4(s)

]
.

A superposed bar indicates the Fourier transform. The Fourier transform is defined as follows:

f̄ (s)=
∫ ∞
−∞

f (x)eisxdx, f (x)=
1

2π

∫ ∞
−∞

f̄ (s)e−isxds (26)

By solving four Eqs. (24) and (25) with four unknown functions, substituting the solutions into Eq. (19) and applying the
boundary conditions, it can be obtained

σ(1)
y (x,0)=

eβx

2π

∫ ∞
−∞

[
d1(s) f̄1(s)+d2(s) f̄2(s)

]
e−isxds=−σ0(x), 0≤ |x| ≤ l (27)

τ(1)
xy (x,0)=

eβx

2π

∫ ∞
−∞

[
d3(s) f̄1(s)+d4(s) f̄2(s)

]
e−isxds=−τ0(x), 0≤ |x| ≤ l (28)∫ ∞

−∞
f̄1(s)e−isxds=0, |x|> l (29)∫ ∞

−∞
f̄2(s)e−isxds=0, |x|> l (30)

where d1(s), d2(s), d3(s) and d4(s) are known functions as follows

[X5]= [X3]− [X4][X2]−1 [X1] ,

[
d1(s) d2(s)
d3(s) d4(s)

]
= [X1][X5]−1

To determine the unknown functions f̄1(s) and f̄2(s), the above two pairs of dual integral Eqs. (27) – (30) must be solved.

4. Solution of the Dual Integral Equations

To solve the problem, the jumps of the displacements across the crack surfaces can be represented by the following
series (When the material properties are not continuous along the crack line, as assumption mentioned above, the problem
is solved under the assumptions that the effect of the crack surface overlapping very near the crack tips is negligible. These
assumptions had been used in Refs. (18) – (20). It can be obtained that the jumps of the displacements across the crack
surface are finite, differentiable and continuous functions.):

f1(x)=
∞∑

n=0
anP(1/2,1/2)

n

( x
l

)(
1− x2

l2

) 1
2

, for 0≤ |x| ≤ l (31)

f1(x)=0, for |x|> l (32)
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f2(x)=
∞∑

n=0
bnP(1/2,1/2)

n

( x
l

)(
1− x2

l2

) 1
2

, for 0≤ |x| ≤ l

(33)

f2(x)=0, for |x|> l (34)

where an and bn are unknown coefficients, P(1/2,1/2)
n (x) is a

Jacobi polynomial(21). The phenomenon of the crack sur-
face overlapping near the crack tips will not be included in
the series as shown in Eqs. (31) – (34). The Fourier trans-
form of Eqs. (31) – (34) is(22)

f̄1(s)=
∞∑

n=0
anGn

1
s

Jn+1(sl), f̄2(s)=
∞∑

n=0
bnGn

1
s

Jn+1(sl)

(35)

Gn =2
√
π(−1)nin

Γ

(
n+1+

1
2

)
n!

(36)

where Γ(x) and Jn(x) are the Gamma and Bessel functions,
respectively.

Substituting Eq. (35) into Eqs. (27) – (30), it can be
shown that Eqs. (29) – (30) are automatically satisfied. Af-
ter integration with respect to x in [−l, x], Eqs. (27) and
(28) reduce to

1
2π

∞∑
n=0

Gn

∫ ∞
−∞

i
s2

[d1(s)an+d2(s)bn] Jn+1(sl)
[
e−isx−eisl

]
ds=−

∫ x

−l
σ0(s)e−βsds, 0≤ |x| ≤ l (37)

1
2π

∞∑
n=0

Gn

∫ ∞
−∞

i
s2

[d3(s)an+d4(s)bn] Jn+1(sl)
[
e−isx−eisl

]
ds=−

∫ x

−l
τ0(s)e−βsds, 0≤ |x| ≤ l (38)

From the relationships(21)

∫ ∞
0

1
s

Jn(sa)sin(bs)ds=



sin
[
nsin−1(b/a)

]
n

, a≥b

an sin(nπ/2)

n
[
b+
√

b2−a2
]n , b≥a

(39)

∫ ∞
0

1
s

Jn(sa)cos(bs)ds=



cos
[
nsin−1(b/a)

]
n

, a≥b

an cos(nπ/2)

n
[
b+
√

b2−a2
]n , b≥a

(40)

the semi-infinite integral in Eqs. (37) and (38) can be modified as:

∫ ∞
−∞

dj(s)

s2
Jn+1(sl)

[
e−isx−eisl

]
ds=


2δ j

n+1
cos
[
(n+1)sin−1

( x
l

)]
, n=0,2,4,6, . . .

−2iδ j

n+1
sin
[
(n+1)sin−1

( x
l

)]
, n=1,3,5,7, . . .

+

∫ ∞
−∞

1
s

[
dj(s)

s
−δ j

]
Jn+1(sl)

[
e−isx−eisl

]
ds ( j=1,4) (41)

∫ ∞
−∞

dj(s)

s2
Jn+1(sl)

[
e−isx−eisl

]
ds=


2δ j

n+1

{
cos
[
(n+1)sin−1

( x
l

)]
− (−1)

n+1
2

}
, n=1,3,5,7, . . .

−2iδ j

n+1

{
sin
[
(n+1)sin−1

( x
l

)]
+ (−1)

n
2

}
, n=0,2,4,6, . . .

+

∫ ∞
0

1
s

[
dj(s)

s
−δ j

]
Jn+1(sl)

[
e−isx−eisl

]
ds

+

∫ 0

−∞
1
s

[
dj(s)

s
+δ j

]
Jn+1(sl)

[
e−isx−eisl

]
ds ( j=2,3) (42)

where lim
s→±∞d1(s)/s= δ1, lim

s→+∞d2(s)/s=− lim
s→−∞d2(s)/s= δ2, lim

s→+∞d3(s)/s=− lim
s→−∞d3(s)/s= δ3, lim

s→±∞d4(s)/s= δ4.

It can be seen as follows:[
X̃1

]
=

 µ
(1)
120

[
−ic(1)

12 −c(1)
22 m̃1λ̃1

]
µ(1)

120

[
−ic(1)

12 −c(1)
22 m̃2λ̃2

]
µ(1)

120

[
−λ̃1− im̃1

]
µ(1)

120

[
−λ̃2− im̃2

]
 (43)

[
X̃2

]
=

 µ
(2)
120

[
−ic(2)

12 −c(2)
22 m̃3λ̃3

]
µ(2)

120

[
−ic(2)

12 −c(2)
22 m̃4λ̃4

]
µ(2)

120

[
−λ̃3− im̃3

]
µ(2)

120

[
−λ̃4− im̃4

]
 (44)
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[
X̃3

]
=

[
1 1

m̃1 m̃2

]
,
[
X̃4

]
=

[
1 1

m̃3 m̃4

]
(45)

[
X̃5

]
=
[
X̃3

]
−
[
X̃4

][
X̃2

]−1 [
X̃1

]
,

[
δ1 δ2
δ3 δ4

]
=
[
X̃1

][
X̃5

]−1
(46)

Where

λ̃1= lim
s→+∞λ1(s)/s=

√√√√√−c(1)
12

(
2+c(1)

12

)
+c(1)

11 c(1)
22 +

√
−4c(1)

11 c(1)
22 +
[
c(1)

12

(
2+c(1)

12

)
−c(1)

11 c(1)
22

]2
2c(1)

22

,

λ̃2= lim
s→+∞λ2(s)/s=

√√√√√−c(1)
12

(
2+c(1)

12

)
+c(1)

11 c(1)
22 −

√
−4c(1)

11 c(1)
22 +
[
c(1)

12

(
2+c(1)

12

)
−c(1)

11 c(1)
22

]2
2c(1)

22

,

λ̃3= lim
s→+∞λ3(s)/s=−

√√√√√−c(2)
12

(
2+c(2)

12

)
+c(2)

11 c(2)
22 +

√
−4c(2)

11 c(2)
22 +
[
c(2)

12

(
2+c(2)

12

)
−c(2)

11 c(2)
22

]2
2c(2)

22

,

λ̃4= lim
s→+∞λ4(s)/s=−

√√√√√−c(2)
12

(
2+c(2)

12

)
+c(2)

11 c(2)
22 −

√
−4c(2)

11 c(2)
22 +
[
c(2)

12

(
2+c(2)

12

)
−c(2)

11 c(2)
22

]2
2c(2)

22

,

m̃ j = lim
s→+∞mj(s)=

−c( j)
11 + λ̃

2
j

−iλ̃ j

(
1+c( j)

12

) ( j=1,2,3,4).

When µ(1)
120=µ

(2)
120, c(1)

12 = c(2)
12 , c(1)

22 = c(2)
22 and c(1)

11 = c(2)
11 , it can be obtained that δ1= δ4 =0,

δ2=
µ(1)

120

[
2α1α2

(
1+c(1)

12

)
c(1)

22 θ1−c(1)
12

(
−4c(1)

11 c(1)
22 +θ

2
2−∆2

0

)]
4
√

2c(1)
11 c(1)

22

(
1+c(1)

12

)
(α1+α2)

(47)

δ3=
µ(1)

120

[
2α1α2

(
1+c(1)

12

)
c(1)

22 θ1−c(1)
12

(
−4c(1)

11 c(1)
22 +θ

2
2−∆2

0

)]
2
√

2c(1)
22

(
1+c(1)

12

)
[α2(θ2+∆0)−α1(−θ2+∆0)]

(48)

θ1 = c(1)2
12 − c(1)

11 c(1)
22 , θ2 =−c(1)

12

(
2+c(1)

12

)
+ c(1)

11 c(1)
22 , ∆0 =

√
−4c(1)

11 c(1)
22 +θ

2
2, α1 =

√
θ2+∆0

c(1)
22

, α2 =

√
θ2−∆0

c(1)
22

. This is the same

case as in Ref. (13).

The semi-infinite integral in Eqs. (41) and (42) can
be evaluated directly. Equations (37) and (38) can now
be solved for the coefficients an and bn by the Schmidt
method(14), (15). For brevity, Eqs. (37) and (38) can be
rewritten as

∞∑
n=0

anE∗n(x)+
∞∑

n=0
bnF∗n(x)=U0(x), 0≤ |x| ≤ l (49)

∞∑
n=0

anG∗n(x)+
∞∑

n=0
bnH∗n(x)=V0(x), 0≤ |x| ≤ l (50)

where E∗n(x), F∗n(x), G∗n(x), H∗n(x), U0(x) and V0(x) are
known functions. The coefficients an and bn are unknown.

From Eq. (50), it can be obtained:
∞∑

n=0
bnH∗n(x)=−

∞∑
n=0

anG∗n(x)+V0(x) (51)

It can now be solved for the coefficients bn by the Schmidt

method(14), (15), (23) – (28). Here the form −
∞∑

n=0
anG∗n(x)+V0(x)

can be considered as a known function temporarily. A set
of functions Pn(x), which satisfy the orthogonality condi-
tion

∫ l

−l
Pm(x)Pn(x)dx=Nnδmn, Nn =

∫ l

−l
P2

n(x)dx (52)

can be constructed from the function, H∗n(x), such that

Pn(x)=
n∑

i=0

Min

Mnn
H∗i (x) (53)

where Mi j is the cofactor of the element di j of Dn, which
is defined as

Dn =



d00,d01,d02, . . . ,d0n

d10,d11,d12, . . . ,d1n

d20,d21,d22, . . . ,d2n

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

dn0,dn1,dn2, . . . ,dnn


, di j =

∫ l

−l
H∗i (x)H∗j (x)dx

(54)

Using Eqs. (51) – (54), it can be obtained that

bn =
∞∑
j=n

q j
Mn j

Mj j
with
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qj =−
∞∑

i=0
ai

1
Nj

∫ l

−l
G∗i (x)P j(x)dx

+
1
Nj

∫ l

−l
V0(x)Pj(x)dx (55)

So it can be rewritten

bn=
∞∑

i=0
aiK

∗
in+

∞∑
j=n

Mn j

NjMj j

∫ l

−l
V0(x)P j(x)dx,

K∗in=−
∞∑
j=n

Mn j

NjMj j

∫ l

−l
G∗i (x)P j(x)dx (56)

Substituting Eq. (56) into Eq. (49), it can be obtained
∞∑

n=0
anY∗n (x)=U0(x)−W(x),

Y∗n (x)=E∗n(x)+
∞∑

i=0
K∗niF

∗
i (x),

W(x)=
∞∑

n=0
Fn(x)

∞∑
j=n

Mn j

NjMj j

∫ l

−l
V0(s)Pj(s)ds (57)

So it can now be solved for the coefficients an by the
Schmidt method again as mentioned above. With the aid
of Eq. (56), the coefficients bn can be obtained.

5. Stress Intensity Factors

The coefficients an and bn are known, so that the en-
tire stress field can be obtained. However, in fracture me-
chanics, it is important to determine stresses σ(1)

y and τ(1)
xy

in the vicinity of the crack tips. In the case of the present
study, σ(1)

y and τ(1)
xy along the crack line can be expressed

as:

σ(1)
y (x,0)

=
eβx

2π

∞∑
n=0

Gn

∫ ∞
−∞

1
s

[d1(s)an+d2(s)bn] Jn+1(sl)e−isxds

=
eβx

2π

∞∑
n=0

Gn

{
an

∫ ∞
−∞

(
d1(s)

s
−δ1
)

Jn+1(sl)e−isxds

+bn

∫ ∞
0

(
d2(s)

s
−δ2
)

Jn+1(sl)e−isxds

+bn

∫ 0

−∞

(
d2(s)

s
+δ2

)
Jn+1(sl)e−isxds

+δ1an

∫ ∞
−∞

Jn+1(sl)e−isxds

+δ2bn

∫ ∞
0

Jn+1(sl)e−isxds

−δ2bn

∫ 0

−∞
Jn+1(sl)e−isxds

}
(58)

τ(1)
xy (x,0)

=
eβx

2π

∞∑
n=0

Gn

∫ ∞
−∞

1
s

[d3(s)an+d4(s)bn] Jn+1(sl)e−isxds

=
eβx

2π

∞∑
n=0

Gn

{
an

∫ ∞
0

(
d3(s)

s
−δ3
)

Jn+1(sl)e−isxds

+an

∫ 0

−∞

(
d3(s)

s
+δ3

)
Jn+1(sl)e−isxds

+bn

∫ ∞
−∞

(
d4(s)

s
−δ4
)

Jn+1(sl)e−isxds

+δ3an

∫ ∞
0

Jn+1(sl)e−isxds

−δ3an

∫ 0

−∞
Jn+1(sl)e−isxds

+δ4bn

∫ ∞
−∞

Jn+1(sl)e−isxds

}
(59)

An examination of Eqs. (58) and (59) shows that, the sin-
gular part of the stress field can be obtained from the rela-
tionships as follows(21):∫ ∞

0
Jn(sa)cos(bs)ds

=



cos
[
nsin−1(b/a)

]
√

a2−b2
, a>b

− an sin(nπ/2)√
b2−a2

[
b+
√

b2−a2
]n , b>a

(60)

∫ ∞
0

Jn(sa)sin(bs)ds

=



sin
[
nsin−1(b/a)

]
√

a2−b2
, a>b

an cos(nπ/2)√
b2−a2

[
b+
√

b2−a2
]n , b>a

(61)

∫ ∞
−∞

Jn+1(sl)e−isxds=0, x> l (62)

For l < x, the singular part of the stress fields can be ex-
pressed respectively as follows:

σ=
δ2eβx

2π

∞∑
n=0

bnGn

[∫ ∞
0

Jn+1(sl)e−isxds

−
∫ 0

−∞
Jn+1(sl)e−isxds

]

=−δ2eβx

π

∞∑
n=0

bnGnQn(x) (63)

τ=
δ3eβx

2π

∞∑
n=0

anGn

[∫ ∞
0

Jn+1(sl)e−isxds

−
∫ 0

−∞
Jn+1(sl)e−isxds

]

=−δ3eβx

π

∞∑
n=0

anGnQn(x) (64)

where

Qn(x)=



(−1)
n
2 ln+1

√
x2− l2

[
x+
√

x2− l2
]n+1
, n=0,2,4,6, . . .

i(−1)
n+1

2 ln+1

√
x2− l2

[
x+
√

x2− l2
]n+1
, n=1,3,5,7, . . .

For x<−l, the singular part of the stress fields can be ex-
pressed respectively as follows:
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σ=
δ2eβx

2π

∞∑
n=0

bnGn

[∫ ∞
0

Jn+1(sl)e−isxds

−
∫ 0

−∞
Jn+1(sl)e−isxds

]

=−δ2eβx

π

∞∑
n=0

bnGnQ∗n(x) (65)

τ=
δ3eβx

2π

∞∑
n=0

anGn

[∫ ∞
0

Jn+1(sl)e−isxds

−
∫ 0

−∞
Jn+1(sl)e−isxds

]

=−δ3eβx

π

∞∑
n=0

anGnQ∗n(x) (66)

where

Q∗n(x)=



(−1)
n
2 ln+1

√
x2− l2

[
|x|+ √x2− l2

]n+1
, n=0,2,4,6, . . .

−i(−1)
n+1

2 ln+1

√
x2− l2

[
|x|+ √x2− l2

]n+1
, n=1,3,5,7, . . .

The values of the stress intensity factor at the right tip of
the crack can be given as follows

KI(l)= lim
x→l+

√
2(x− l) ·σ

=−2δ2eβl√
πl

∞∑
n=0

(−1)nbn

Γ

(
n+1+

1
2

)
n!

(67)

KII(l)= lim
x→l+

√
2(x− l) ·τ

=−2δ3eβl√
πl

∞∑
n=0

(−1)nan

Γ

(
n+1+

1
2

)
n!

(68)

The values of the stress intensity factor at the left tip of the
crack can be given as follows

KI(−l)= lim
x→−l−

√
2(|x|− l) ·σ

=−2δ2e−βl√
πl

∞∑
n=0

bn

Γ

(
n+1+

1
2

)
n!

(69)

KII(−l)= lim
x→−l−

√
2(|x|− l) ·τ

=−2δ3e−βl√
πl

∞∑
n=0

an

Γ

(
n+1+

1
2

)
n!

(70)

6. Numerical Calculations and Discussion

To check the numerical accuracy of the Schmidt

method, the values of

[
9∑

n=0
anE∗n(x)+

9∑
n=0

bnF∗n(x)

]/
(2πσ0)

and U0(x)/σ0 are given in Table 1 for βl = 0.1, −σ0(x) =
−p0, τ0(x) = 0.0, µ(1)

120 = µ
(2)
120 = 6.4 GPa, E(1)

10 = E(2)
10 =

207.0 GPa, E(1)
20 = E(2)

20 = 19.0 GPa and ν(1)
12 = ν

(1)
23 = ν

(2)
12 =

Table 1 Values of

[
9∑

n=0
anE∗n(x)+

9∑
n=0

bnF∗n(x)

]/
(2πσ0) and

U0(x)/σ0 for βl = 0.1, −σ0(x) = −p0, τ0(x) = 0.0,
µ(1)

120 = µ
(2)
120 = 6.4 GPa, E(1)

10 = E(2)
10 = 207.0 GPa,

E(1)
20 =E(2)

20 =19.0 GPa and ν(1)
12 = ν

(1)
23 = ν

(2)
12 = ν

(2)
23 =0.21

Table 2 Values of an and bn for βl=0.1, −σ0(x)=−p0, τ0(x)=
0.0, µ(1)

120 = µ
(2)
120 = 6.4 GPa, E(1)

10 = E(2)
10 = 207.0 GPa,

E(1)
20 =E(2)

20 =19.0 GPa and ν(1)
12 = ν

(1)
23 = ν

(2)
12 = ν

(2)
23 =0.21

ν(2)
23 = 0.21. In Table 2, the values of the coefficients an

and bn are given for βl = 0.1, −σ0(x) = −p0, τ0(x) = 0.0,
µ(1)

120 =µ
(2)
120 =6.4 GPa, E(1)

10 =E(2)
10 =207.0 GPa, E(1)

20 =E(2)
20 =

19.0 GPa and ν(1)
12 = ν

(1)
23 = ν

(2)
12 = ν

(2)
23 =0.21.

As discussed in the works(23) – (28) and the above
discussion, it can be seen that the Schmidt method is
performed satisfactorily if the first ten terms of infinite
series in Eqs. (31) and (33) are retained. The behavior
of the sum of the series keeps steady with the increasing
number of terms in Eqs. (31) and (33). For the case in
which the material properties are not continuous along
the interface, it is assumed that

(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
=

(7.07 GPa,156.75 GPa,10.41 GPa,0.31,0.49) and (µ(2)
120,

E(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23 ) = (6.4 GPa,207 GPa,19 GPa,0.21,

0.21). For the case in which the material properties
are continuous along the interface, it is assumed that(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
=
(
µ(2)

120,E
(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23

)
=

(7.07 GPa,156.75 GPa,10.41 GPa,0.31,0.49). The crack
surface loading −σ0(x) and −τ0(x) will simply be
assumed to be a polynomial of the form as follows:

−σ0(x)=−p0− p1

( x
l

)
− p2

( x
l

)2
− p3

( x
l

)3
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Fig. 2 Influence of βl on the normalized Mode-I SIFs under the
loadingσ0(x)= p0 and τ0(x)=0 for the case in which the
properties are continuous along the crack line

Fig. 3 Influence of βl on the normalized Mode-I SIFs under

the loading σ0(x) = p1

( x
l

)
and τ0(x) = 0 for the case in

which the properties are continuous along the crack line

Fig. 4 Influence of βl on the normalized Mode-I SIFs under

the loading σ0(x)= p2

( x
l

)2
and τ0(x)= 0 for the case in

which the properties are continuous along the crack line

−τ0(x)=−s0− s1

( x
l

)
− s2

( x
l

)2
− s3

( x
l

)3
Since the problem is linear, the results can be superim-
posed in any suitable manner. The results are obtained by
taking only one or two of the eight input parameters p0, p1,
p2, p3, s0, s1, s2 and s3 nonzero at a time. The values of
the stress intensity factor are calculated numerically. The
results of the present paper are shown in Fig. 2 to Fig. 11.

From the results, the following observations can be
made:

Fig. 5 Influence of βl on the normalized Mode-I SIFs under

the loading σ0(x)= p3

( x
l

)3
and τ0(x)= 0 for the case in

which the properties are continuous along the crack line

Fig. 6 Influence of βl on the values of the stress intensity factor

K under the loading σ0(x)= p0 and τ0(x)= s1

( x
l

)
for the

case in which the properties are continuous along the
crack line

Fig. 7 Influence of βl on the normalized Mode-I SIFs under the
loadingσ0(x)= p0 and τ0(x)=0 for the case in which the
properties are not continuous along the crack line

( i ) The aim of the present paper is to give a new ap-
proach to solve the same problem as in Ref. (13). The
solving process is quite different from the other works
such as in Refs. (13) and (16) – (20). The results are simi-
lar to that in Ref. (13) as shown in Table 3 and Fig. 2 when(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
=
(
µ(2)

120,E
(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23

)
. It is

also proved that the Schmidt method is performed satis-
factorily. Further more, the numerical solutions are ob-
tained when the material properties are not continuous
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Fig. 8 Influence of βl on the values of the stress intensity factor

K under the loading σ0(x)= p1

( x
l

)
and τ0(x)= 0 for the

case in which the properties are not continuous along the
crack line

Fig. 9 Influence of βl on the normalized Mode-I SIFs under

the loading σ0(x)= p2

( x
l

)2
and τ0(x)=0 for the case in

which the properties are not continuous along the crack
line

Fig. 10 Influence of βl on the normalized Mode-I SIFs under

the loading σ0(x)= p3

( x
l

)3
and τ0(x)=0 for the case in

which the properties are not continuous along the crack
line

across the crack line under the assumptions that the effect
of the crack surface overlapping very near the crack tips
is negligible. For this special case (From practical view
points, researchers in the field of functionally graded ma-
terials will not pay their attention in this case), it is found
that the stress singularities of the present interface crack
solution are similar to ones for the ordinary crack in ho-

Fig. 11 Influence of βl on the values of the stress intensity

factor K under the loadingσ0(x)= p0 and τ0(x)= s1

( x
l

)
for the case in which the properties are not continuous
along the crack line

Table 3 The normalized stress intensity factors for an
inhomogeneous orthotropic medium under crack
loading σ0(x) = p0 and τ0(x) = 0 for the case k = 5.0
and ν=0.3 when the material properties are continuous

along the crack line. Where k=
E(1)

2µ(1)
120

−ν, ν=
√
ν(1)

12 ν
(1)
21 ,

E(1) =

√
E(1)

10 E(1)
20

Where K∗I (l)/p0

√
l and K∗I (−l)/p0

√
l represent the stress intensity

factors in Ref. (13).

mogeneous orthotropic materials(16), (17). This special case
was not considered in Ref. (13).

( ii ) In the present paper, the unknown vari-
ables of dual integral equations are the displacement
across the crack surfaces. However, in the previous
works(13), (16) – (20), the unknown variables of dual integral
equations are the dislocation density functions. During the
solution process in the present paper, the results can be
directly obtained, without any need to solve the singular
integral equations. This is the major difference.

(iii) It can be obtained that the values of the
shear stress intensity factors are equal to zero for
the tension loading σ0(x) = p0 and τ0(x) = 0 when(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
=
(
µ(2)

120,E
(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23

)
from

the results as shown in Fig. 2 to Fig. 5. However, it can be
obtained that the shear stress intensity factors are not equal
to zero for the tension loading σ0(x) = p0 and τ0(x) = 0,
the normal stress intensity factors are also not equal to

zero for the shear loading τ0(x) = s1

( x
l

)
and σ0(x) =
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0 when
(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
�
(
µ(2)

120,E
(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23

)
as shown in Fig. 7 to Fig. 11. This is consistent with the
results in Refs. (29) and (30).

( iv ) It can be obtained that the stress intensity fac-
tors KI(l)/p0

√
l = KI(−l)/p0

√
l = 1.0 under the ten-

sion loading σ0(x) = p0 and τ0(x) = 0 for βl = 0 and(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
=
(
µ(2)

120,E
(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23

)
. How-

ever, it can be obtained that the stress intensity fac-
tors KI(l)/p0

√
l and KI(−l)/p0

√
l tend to unit under the

tension loading σ0(x) = p0 and τ0(x) = 0 for βl = 0
and

(
µ(1)

120,E
(1)
10 ,E

(1)
20 ,ν

(1)
12 ,ν

(1)
23

)
�
(
µ(2)

120,E
(2)
10 ,E

(2)
20 ,ν

(2)
12 ,ν

(2)
23

)
as

shown in Figs. 2 and 7.
( v ) From the results, it can be obtained that the

Schmidt method can be used to solve the mix boundary
crack problem as shown in Figs. 6 and 11.

(vi ) The influence of the normalized non-homoge-
neity constant βl on the stress fields is quite signifi-
cant. It can be obtained that the stress intensity factor
KI(l)/p0

√
l tends to increase with increase in the normal-

ized non-homogeneity constant βl, the stress intensity fac-
tor KI(−l)/p0

√
l tends to decrease with increase in the nor-

malized non-homogeneity constant βl as shown in Figs. 2
and 7 for the tension loading σ0(x)= p0 and τ0(x)=0.

(vii) It can be obtained that the stress intensity fac-
tor KI(l)/p1

√
l tends to decrease with increase in the nor-

malized non-homogeneity constant βl, the stress inten-
sity factor KI(−l)/p1

√
l changes slowly with increase in

the normalized non-homogeneity constant βl as shown in

Figs. 3 and 8 for the tension loading σ0(x) = p1

( x
l

)
and

τ0(x)=0. It can be also obtained that KI(l)/p1

√
l=0.5 and

KI(−l)/p1

√
l = −0.5 for βl = 0 under the tension loading

σ0(x)= p1

( x
l

)
and τ0(x)=0.
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